Where Does Your Water Come From?
Denver's drinking water comes from rivers, lakes, streams, reservoirs and springs fed by high-quality mountain snow runoff. Denver Water's supply is 100 percent surface water that originates in sources throughout the watershed that encompasses 3,100 square miles on both sides of the Continental Divide.

Mountain Water Sources
Denver’s water sources are the South Platte River and its tributaries, the streams that feed Dillon Reservoir and the creeks and canals above the Fraser River. Denver Water stores its water in five mountain reservoirs – Antero, Eleven Mile Canyon, Cheesman, Dillon and Gross. From these reservoirs, the water is then sent to one of three treatment plants in the city through a complex system of streams, canals and pipes.

After treatment, drinking water is fed by both gravity and pumps to a system of underground, clear-water reservoirs before continuing to your home or business. More than 2,700 miles of pipe carry water to Denver Water customers.

Assessment in the Works
The state health department is in the final stages of completing a source water assessment of the potential for contaminants reaching any of Denver Water’s three terminal reservoirs at Strontia Springs, Marston and Ralston (see map). A copy of the report can be obtained from the Colorado Department of Public Health and Environment by calling 303-692-2000.

The Tradition Continues
Denver Water is the largest and oldest water system between California and the Mississippi River. Established in 1918 when Denver citizens purchased the water system from a private company, Denver Water serves a total of 1.2 million people in the Denver Metro area and has a total water service area of approximately 300 square miles.

We take our water quality very seriously – we collect nearly 13,000 samples and conduct more than 44,000 tests each year to ensure our water is as clean and safe as possible.

Denver Water vigilantly safeguards its mountain water supplies, and before the water reaches your tap, we carefully filter and treat it. This brochure provides data collected throughout 2007. Visit us online at www.denverwater.org.

Water Quality Questions?
Call Customer Service at 303-893-2444.

En Español
Esta información acerca de su agua potable es importante. Si usted no puede leer esto en inglés, por favor pidale a alguien que le traduzca esta importante información o llame a Cuidado al Cliente al número (303) 893-2444.

The Denver Board of Water Commissioners meets at 9:15 a.m. on the second and fourth Wednesday of each month at Denver Water, 1600 W. 12th Ave. Board sessions are open to the public.

Last year the Water Quality Lab at Denver Water collected 12,610 water samples and conducted 9,150 microbiological and 33,806 chemical tests.

For a copy of the 2007 Treated Water Quality Summary please call 303-893-2444.
Water at a Glance

ALL DRINKING WATER can reasonably be expected to contain small amounts of some contaminants. The presence of these substances in drinking water does not necessarily pose a health risk. Immunocompromised individuals—such as persons who have undergone organ transplants, those with HIV/AIDS or other immune system disorders, and some elderly and infants—can be particularly at risk of infections. These people should seek drinking water advice from their healthcare providers. For more information about contaminants and potential health effects, or to receive a copy of the U.S. Environmental Protection Agency and the U.S. Centers for Disease Control guidelines on appropriate means to lessen the risk of infection by cryptosporidium and microbiological contaminants, call the EPA Safe Drinking Water Hotline at 1-800-426-4791.

Lead in Drinking Water

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Denver Water is responsible for providing high-quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking.

If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

Is There a Presence of Cryptosporidium and Giardia?

Denver Water has tested for Cryptosporidium (Crypto) and Giardia in both raw and treated water since the 1980s. Since that time, Denver Water has never detected a viable indication of either in the treated drinking water.

Crypto and Giardia are microscopic organisms that, when ingested, can cause diarrhea, cramps, fever and other gastrointestinal symptoms. Crypto and Giardia are usually spread through means other than drinking water.

While most people readily recover from the symptoms, Crypto and Giardia can cause more serious illness in people with compromised immune systems. The organisms are in many of Colorado’s rivers and streams and are a result of animal wastes in the watershed. At the treatment plants, Denver Water removes Crypto and Giardia through effective filtration, and Giardia is also killed by disinfection.

Pharmaceuticals in Drinking Water

Recent media reports have highlighted the presence of pharmaceuticals in municipal water supplies. Denver Water proactively participated in some of the earliest research projects looking for these compounds in a 2005 project with Colorado State University. The study was limited in scope and scale but did detect trace amounts of antibiotics at part per trillion concentrations (one part per trillion is equivalent to one drop of water in twenty Olympic-sized swimming pools).

Even the world’s best scientists don’t yet know what the presence of these substances in water mean to human health. In fact, the testing technology is so new, most commercial labs are not even equipped to analyze for these compounds yet. Consequently, EPA has no current or proposed regulations for these substances. Denver Water has and always will strive to deliver the highest quality water to our customers. If future research indicates that certain substances should be removed from water, we will work to find the best method of removal.

Sources of Drinking Water

Sources of drinking water include rivers, lakes, streams, ponds, reservoirs and springs. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material. It can also pick up substances resulting from human activity and the presence of animals. Contaminants may include the following:

- **Microbial Contaminants**- viruses, bacteria and other microbes that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- **Inorganic Contaminants**- salts and metals, which can be naturally occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- **Pesticides and Herbicides**- chemical substances resulting from a variety of sources, such as agricultural and urban storm water runoff, and residential uses.
- **Organic Chemical Contaminants**- substances including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and also may come from gas stations, urban storm water runoff, and septic systems.
- **Radioactive Contaminants**- substances that can be naturally occurring or be the result of oil and gas production, and mining activities.
Some of the terms, abbreviations and symbols contained in this report are unique to the water industry and might not be familiar to all customers. Terms used in the table are explained below.

Terms, Abbreviations & Symbols:

Contaminant: a potentially harmful physical, biological, chemical or radiological substance.

Maximum Contaminant Level (MCL): Highest level of a contaminant allowed in drinking water. MCLs are set as close to the Maximum Contaminant Level Goal as feasible using the best available treatment technology.

Maximum Level Contaminant Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Action Level: Concentration of a contaminant, that if exceeded, triggers treatment or other requirements that a water system must follow.

Parts Per Million (ppm): Equivalent to milligrams per liter. One ppm is comparable to one drop of water in 55 gallons.

Parts per Billion (ppb): Equivalent to micrograms per liter. One ppb is comparable to one drop of water in 55,000 gallons.

PicoCuries per liter (pCi/L): Measures radioactivity.

Turbidity: A measure of suspended material in water. In the water field, a turbidity measurement (expressed in Nephalometric Turbidity Units) is used to indicate clarity of water.

Secondary Maximum Contaminant Level (SMCL): Nonenforceable, recommended limits for substances that affect the taste, odor, color or other aesthetic qualities of drinking water, rather than posing a health risk.

Maximum Residual Disinfectant Level (MRDL): Highest level of a disinfectant allowed in drinking water. There is convincing evidence the addition of disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): Level of a drinking water disinfectant below which there is no known or expected health risk. MRDLGs do not reflect benefit of the use of disinfectants to control microbial contaminants.

The Treatment Process

The treatment process consists of five steps:

1. **Coagulation/flocculation:** Raw water from terminal reservoirs is drawn into mixing basins at our treatment plants where we add alum, polymer and sometimes lime and carbon dioxide. This process causes small particles to stick to one another forming larger particles.

2. **Sedimentation:** Over time, the now larger particles become heavy enough to settle to the bottom of a basin from which sediment is removed.

3. **Filtration:** The water is then filtered through layers of fine, granulated materials — either sand, or sand and coal, depending on the treatment plant. As smaller, suspended particles are removed, turbidity diminishes and clear water emerges.

4. **Disinfection:** As protection against any bacteria, viruses and other microbes that might remain, disinfectant is added before the water flows into underground reservoirs throughout the distribution system and into your home or business. Denver Water carefully monitors the amount of disinfectant added to maintain quality of the water at the farthest reaches of the system. Fluoride occurs naturally in our water but is also added to treated water.

5. **Corrosion control:** pH is maintained by adding alkaline substances to reduce corrosion in the distribution system and the plumbing in your home or business.
Regulated Water Contaminants: What is in the water?

Regulated at the Treatment Plant (Entry to the Distribution System)

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Units of Measurement</th>
<th>EPA Requirements (MCLG)</th>
<th>Highest Levels Allowed (MCL)</th>
<th>Average Level Detected (Range of Values)</th>
<th>MCL Violation?</th>
<th>Sample Frequency</th>
<th>Possible Sources of Substances</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum</td>
<td>ppb</td>
<td>N/A</td>
<td>50 - 200 (SMCL)</td>
<td>70 (nd³ - 450)</td>
<td>No</td>
<td>Monthly</td>
<td>Erosion of natural deposits, discharge of drilling wastes, corrosion of household plumbing</td>
</tr>
<tr>
<td>Barium</td>
<td>ppm</td>
<td>2</td>
<td>2</td>
<td>0.035 (0.016 - 0.042)</td>
<td>No</td>
<td>Monthly</td>
<td>Erosion of natural deposits, corrosion of galvanized pipes, erosion of natural deposits</td>
</tr>
<tr>
<td>Cadmium</td>
<td>pbh</td>
<td>5</td>
<td>50 (SMCL)</td>
<td>5 (nd - 20)</td>
<td>No</td>
<td>Monthly</td>
<td>Erosion of natural deposits, discharge of drilling wastes, corrosion of household plumbing</td>
</tr>
<tr>
<td>Manganese</td>
<td>pbh</td>
<td>N/A</td>
<td>50 (SMCL)</td>
<td>nd (nd - 2)</td>
<td>No</td>
<td>Monthly</td>
<td>Decay of natural and man-made deposits</td>
</tr>
<tr>
<td>Beta/Photon emitters</td>
<td>pCi/L</td>
<td>zero</td>
<td>Trigger Level = 15 pCi/L</td>
<td>0.5 (nd - 2.9)</td>
<td>No</td>
<td>Quarterly</td>
<td>Erosion of natural deposits</td>
</tr>
<tr>
<td>Uranium</td>
<td>μg/L (ppb)</td>
<td>4</td>
<td>4 (2 is SMCL)²</td>
<td>0.90 (0.14 - 1.30)</td>
<td>No</td>
<td>Monthly</td>
<td>From erosion of natural deposits, water additive that promotes strong teeth</td>
</tr>
<tr>
<td>Fluoride</td>
<td>ppm</td>
<td>10</td>
<td>10</td>
<td>0.18 (0.04 - 0.24)</td>
<td>No</td>
<td>Monthly</td>
<td>Erosion of natural deposits</td>
</tr>
<tr>
<td>Nitrate</td>
<td>ppm</td>
<td>500 (SMCL)</td>
<td>173 (58 - 199)</td>
<td>No</td>
<td>No</td>
<td>Monthly</td>
<td>Erosion of natural deposits</td>
</tr>
<tr>
<td>Total Dissolved Solids</td>
<td>ppm</td>
<td>N/A</td>
<td>250 (SMCL)</td>
<td>52.7 (14.9 - 66.5)</td>
<td>No</td>
<td>Monthly</td>
<td>Naturally present in the environment</td>
</tr>
<tr>
<td>Sulfate</td>
<td>ppm</td>
<td>N/A</td>
<td>60</td>
<td>0.40 (0.14 - 1.13)</td>
<td>No</td>
<td>Monthly</td>
<td>Naturally present in the environment</td>
</tr>
<tr>
<td>Turbidity¹</td>
<td>NTU⁵</td>
<td>N/A</td>
<td>2 (nd - 2)</td>
<td>2 (nd - 2)</td>
<td>No</td>
<td>Quarterly</td>
<td>Soil runoff</td>
</tr>
<tr>
<td>Radium²/²³⁷</td>
<td>pCi/L</td>
<td>zero</td>
<td>Percentage of Samples <0.3 NTU<100%</td>
<td>1.02 (0.94 - 1.17) Foothills Treatment Plant</td>
<td>No</td>
<td>Running Annual Average (RAA)</td>
<td>Naturally present in the environment from natural or man-made sources</td>
</tr>
</tbody>
</table>

Regulated in the Distribution System

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Units of Measurement</th>
<th>MCLG</th>
<th>MCL</th>
<th>Average Level Detected (Range of Values)</th>
<th>Violation</th>
<th>Sampling Dates</th>
<th>Sources of contaminant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Trihalomethanes (TTHM)⁶</td>
<td>ppm</td>
<td>N/A</td>
<td>80</td>
<td>Highest RAA: 0.35 (20 - 46)</td>
<td>No</td>
<td>Monthly</td>
<td>By-product of drinking water disinfection</td>
</tr>
<tr>
<td>Haloacetic Acids</td>
<td>pbh</td>
<td>N/A</td>
<td>60</td>
<td>Highest RAA: 0.20 (12 - 31)</td>
<td>No</td>
<td>Monthly</td>
<td>By-product of drinking water disinfection</td>
</tr>
<tr>
<td>Total Coliform</td>
<td>Absent or Present</td>
<td>Zero</td>
<td>No more than 5% positives per month</td>
<td>No</td>
<td>Daily</td>
<td>Naturally present in the environment</td>
<td></td>
</tr>
<tr>
<td>Chloramine</td>
<td>ppm</td>
<td>N/A</td>
<td>4</td>
<td>1.55 (1.12 - 1.97)</td>
<td>No</td>
<td>Daily</td>
<td>Drinking water disinfectant used to kill microbes</td>
</tr>
</tbody>
</table>

Regulated at the Consumer's Tap

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>MCLG</th>
<th>Action Level at the 90th Percentile</th>
<th>90th Percentile Value</th>
<th>No. of Samples exceeding Action Level</th>
<th>Violation</th>
<th>Sampling Dates</th>
<th>Sources of contaminant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper</td>
<td>1.3</td>
<td>1.3</td>
<td>0.34</td>
<td>0 out of 54</td>
<td>No</td>
<td>June - September 2005</td>
<td>Corrosion of household plumbing</td>
</tr>
<tr>
<td>Lead</td>
<td>zero</td>
<td>15</td>
<td>8</td>
<td>2 out of 54</td>
<td>No</td>
<td>June - September 2005</td>
<td>Corrosion of household plumbing</td>
</tr>
</tbody>
</table>

¹ Not applicable.
² Secondary Maximum Contaminant Level (SMCL) is not enforceable.
³ Non-detect: Laboratory analysis indicates that the contaminant was below the detection limit.
⁴ Exceeding the Fluoride Secondary Maximum Contaminant Level of two milligrams per liter triggers public notification.
⁵ Turbidity has no known health effects. However, turbidity can interfere with disinfection and provide a medium for microbial growth.
⁶ Nephelometric Turbidity Units.
⁷ By-products of the disinfection process.
⁸ RAA- Running Annual Average.
⁹ The Disinfection By-Product Rule (DBPR) requires that utilities treat source water to remove a specific percentage of the Total Organic Carbon (TOC) content. TOC is a measure of natural and man-made organic (carbon-containing) material in water. TOC is considered a precursor of disinfection by-products. The more TOC removed, the less by-products are formed by disinfection. Utilities compare the TOC actually removed on any given day, with the TOC that should have been removed. Compliance is based on the Running Annual Average (RAA) of these ratios, calculated quarterly. Utilities are in compliance if the RAA ratio is greater than or equal to 1.00.
¹⁰ Treatment Technique, refers to the water treatment process used in the treatment plants which must be optimized to control the levels of these contaminants, such as corrosion control.
¹¹ Lead isn’t found in Denver’s treated water. However, lead might be present in the private plumbing of homes and businesses. Because Denver Water has consistently been below lead and copper Action Levels, the state health department permits reduced monitoring to once every three years. The next sampling for lead and copper will be in 2008. Figures in this report are from 2005.